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Abstract. A fundamental problem in phase retrieval is to reconstruct an un-
known signal from a set of magnitude-only measurements. In this work we
introduce three novel quotient intensity models (QIMs) based on a deep modi-
fication of the traditional intensity-based models. A remarkable feature of the
new loss functions is that the corresponding geometric landscape is benign under
the optimal sampling complexity. When the measurements ai ∈Rn are Gaus-
sian random vectors and the number of measurements m≥Cn, the QIMs admit
no spurious local minimizers with high probability, i.e., the target solution x is
the unique local minimizer (up to a global phase) and the loss function has a
negative directional curvature around each saddle point. Such benign geometric
landscape allows the gradient descent methods to find the global solution x (up
to a global phase) without spectral initialization.
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1.1 Background

The intensity-based model for phase retrieval is

yj = |aj ·u|2, j=1,··· ,m,

where aj∈Rn, j=1,··· ,m are given vectors and m is the number of measurements.
The phase retrieval problem aims to recover the unknown signal x∈Rn based on the
measurements {(aj,yj)}mj=1. A natural approach to solve this problem is to consider
the minimization problem

min
u∈Rn

f(u)=
1

m

m∑
j=1

((aj ·u)2−(aj ·x)2)2. (1.1)

However, as shown in [28], to guarantee the above loss function to have benign
geometric landscape, the requirement of sampling complexity is O(nlog3n). This
result is recently improved to O(nlogn) in [6]. On the other hand, due to the heavy
tail of the quartic random variables in (1.1), such results seem to be optimal for this
class of loss functions.

To remedy this issue, we propose in this work three novel quotient intensity mod-
els (QIMs) to recover x under optimal sampling complexity. We rigorously prove
that, for Gaussian random measurements, those empirical loss functions admit the
benign geometric landscapes with high probability under the optimal sampling com-
plexity O(n). Here, the phrase “benign” means: (1) the loss function has no spuri-
ous local minimizers; and (2) the loss function has a negative directional curvature
around each saddle point. The three quotient intensity models are

QIM1:

min
u∈Rn

f(u)=
1

m

m∑
k=1

((ak ·u)2−(ak ·x)2)2

(ak ·x)2
. (1.2)

QIM2:

min
u∈Rn

f(u)=
1

m

m∑
k=1

((ak ·u)2−(ak ·x)2)2

β‖u‖22+(ak ·x)2
. (1.3)

QIM3:

min
u∈Rn

f(u)=
1

m

m∑
k=1

((ak ·u)2−(ak ·x)2)2

‖u‖22+β1(ak ·u)2+β2(ak ·x)2
. (1.4)
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The phase retrieval problem arises in many fields of science and engineering such
as X-ray crystallography [17, 23], microscopy [22], astronomy [8], coherent diffrac-
tive imaging [16,27] and optics [33] etc. In practical applications due to the physical
limitations optical detectors can only record the magnitude of signals while losing
the phase information. Many algorithms have been designed to solve the phase re-
trieval problem, which includes convex algorithms and non-convex ones. The convex
algorithms usually rely on a “matrix-lifting” technique, which is computationally in-
efficient for large scale problems [2,4,32]. In contrast, many non-convex algorithms
bypass the lifting step and operate directly on the lower-dimensional ambient space,
making them much more computationally efficient. Early non-convex algorithms
were mostly based on the technique of alternating projections, e.g., Gerchberg-
Saxton [15] and Fineup [10]. The main drawback, however, is the lack of theoretical
guarantee. Later Netrapalli et al. [24] proposed the AltMinPhase algorithm based
on a technique known as spectral initialization. They proved that the algorithm
linearly converges to the true solution with O(nlog3n) resampling Gaussian random
measurements. This work led further to several other non-convex algorithms based
on spectral initialization. A common thread is first choosing a good initial guess
through spectral initialization, and then solving an optimization model through gra-
dient descent, such as the Wirtinger Flow method [3], Truncated Wirtinger Flow
algorithm [7], randomized Kaczmarz method [18,30,35], Gauss-Newton method [12],
Truncated Amplitude Flow algorithm [34], Reshaped Wirtinger Flow (RWF) [36]
and so on.

1.2 Prior arts and connections

As was already mentioned earlier, producing a good initial guess using spectral
initialization seems to be a prerequisite for prototypical non-convex algorithms to
succeed with good theoretical guarantees. A natural and fundamental question is:

Is it possible for non-convex algorithms to achieve successful recovery with a ran-
dom initialization (i.e., without spectral initialization or any additional truncation)?

In the recent work [28], Ju Sun et al. carried out a deep study of the global
geometric structure of phase retrieval problem. They proved that the loss function
does not have any spurious local minima under O(nlog3n) Gaussian random mea-
surements. More specifically, it was shown in [28] that all local minimizers coincide
with the target signal x up to a global phase, and the loss function has a negative
directional curvature around each saddle point. Thanks to this benign geometric
landscape any algorithm which can avoid saddle points converges to the true solu-
tion with high probability. A trust-region method was employed in [28] to find the
global minimizers with random initialization. To reduce the sampling complexity,
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it has been shown in [21] that a combination of the loss function with a judiciously
chosen activation function also possesses the benign geometry structure under O(n)
Gaussian random measurements. Recently, a smoothed amplitude flow estimator
has been proposed in [5] and the authors show that the loss function has benign
geometry structure under the optimal sampling complexity. Numerical tests show
that the estimator in [5] yields very stable and fast convergence with random initial-
ization and performs as good as or even better than the existing gradient descent
methods with spectral initialization.

The emerging concept of a benign geometric landscape has also recently been
explored in many other applications of signal processing and machine learning, e.g.,
matrix sensing [1,25], tensor decomposition [13], dictionary learning [29] and matrix
completion [14]. For general optimization problems there exist a plethora of loss
functions with well-behaved geometric landscapes such that all local optima are
also global optima and each saddle point has a negative direction curvature in its
vincinity. Correspondingly several techniques have been developed to guarantee that
the standard gradient based optimization algorithms can escape such saddle points
efficiently, see e.g., [9, 19, 20].

1.3 Our contributions

This paper aims to show the intensity-based model (1.1) with some deep modification
has a benign geometry structure under the optimal sampling complexity. More
specifically, we first introduce three novel quotient intensity models and then we
prove rigorously that each loss function of them has no spurious local minimizers.
Furthermore, the loss function of quotient intensity model has a negative directional
curvature around each saddle point. Such properties allow first order method like
gradient descent to locate a global minimum with random initial guess.

Our first result shows that the loss function of (1.2) has the benign geometric
landscape, as stated below.

Theorem 1.1 (Informal). Consider the quotient intensity model (1.2). Assume
{ai}mi=1 are i.i.d. standard Gaussian random vectors and x 6=0. There exist positive
absolute constants c, C, such that if m≥Cn, then with probability at least 1−e−cm the
loss function f =f(u) has no spurious local minimizers. The only local minimizers
are ±x. All other critical points are strict saddles.

The second result is the global analysis for the estimator (1.3).

Theorem 1.2 (Informal). Consider the quotient intensity model (1.3). Let 0<
β <∞. Assume {ai}mi=1 are i.i.d. standard Gaussian random vectors and x 6= 0.
There exist positive constants c, C depending only on β, such that if m≥Cn, then
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with probability at least 1−e−cm the loss function f = f(u) has no spurious local
minimizers. The only local minimizer is ±x and all other critical points are strict
saddles.

Remark 1.1. There appears some subtle differences between estimators (1.2) and
(1.3). Although the former looks more singular, one can prove full strong convexity
in the neighborhood of the global minimizers. In the latter case, however, we only
have certain restricted convexity.

The third result is the global landscape for the estimator (1.4).

Theorem 1.3 (Informal). Consider the quotient intensity model (1.4). Let 0<
β1,β2<∞. Assume {ai}mi=1 are i.i.d. standard Gaussian random vectors and x 6=0.
There exist positive constants c, C depending only on β, such that if m≥Cn, then
with probability at least 1−e−cm the loss function f = f(u) has no spurious local
minimizers. The only local minimizer is ±x and all other critical points are strict
saddles.

Remark 1.2. For this case, thanks to the strong damping, we have full strong
convexity in the neighborhood of the global minimizers.

1.4 Notations

Throughout this proof we fix β > 0 as a constant and do not study the precise
dependence of other parameters on β. We write u ∈ Sn−1 if u ∈Rn and ‖u‖2 =√∑

ju
2
j = 1. We use χ to denote the usual characteristic function. For example

χA(x)=1 if x∈A and χA(x)=0 if x /∈A. We denote by δ1, ε, η, η1 various constants
whose value will be taken sufficiently small. The needed smallness will be clear from
the context. For any quantity X, we shall write X =O(Y ) if |X| ≤CY for some
constant C > 0. We write X . Y if X ≤CY for some constant C > 0. We shall
write X�Y if X≤ cY where the constant c> 0 will be sufficiently small. In our
proof it is important for us to specify the precise dependence of the sampling size
m in terms of the dimension n. For this purpose we shall write m&n if m≥Cn
where the constant C is allowed to depend on β and the small constants ε, εi etc
used in the argument. One can extract more explicit dependence of C on the small
constants and β but for simplicity we suppress this dependence here. We shall say
an event A happens with high probability if P(A)≥1−Ce−cm, where c>0, C>0
are constants. The constants c and C are allowed to depend on β and the small
constants ε, δ mentioned before.
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1.5 Organization

In Sections 2–4 we carry out an in-depth analysis of the corresponding geometric
landscape of QIM1, QIM2 and QIM3 under optimal sampling complexity O(n). In
Section 5, we report some numerical experiments to demonstrate the efficiency of
our proposed estimators. In Appendix, we collect the technique lemmas which are
used in the proof.

2 Quotient intensity model I

In this section, we consider the first quotient intensity model and prove that it has
benign geometric landscape, as demonstrated below.

f(u)=
1

m

m∑
k=1

((ak ·u)2−(ak ·x)2)2

(ak ·x)2
. (2.1)

Theorem 2.1. Assume {ak}mk=1 are i.i.d. standard Gaussian random vectors and
x 6=0. There exist positive absolute constants c, C, such that if m≥Cn, then with
probability at least 1−e−cm the loss function f=f(u) defined by (2.1) has no spurious
local minimizers. The only local minimizer is ±x, and the loss function is strongly
convex in a neighborhood of ±x. The point u= 0 is a local maximum point with
strictly negative-definite Hessian. All other critical points are strict saddles, i.e.,
each saddle point has a neighborhood where the function has negative directional
curvature.

Without loss of generality we shall assume x=e1 throughout the rest of the proof.
Note that the set

⋃m
k=1{ak ·e1 = 0} has measure zero. Thus for typical realization

we have ak ·e1 6=0 for all k. This means that the loss function f(u) defined by (2.1)
is smooth almost surely. We denote the Hessian of the function f(u) along the
ξ-direction (ξ∈Sn−1) as

Hξξ(u)=
n∑

i,j=1

ξiξj(∂ijf)(u)=
4

m

m∑
k=1

(
3

(ak ·ξ)2(ak ·u)2

(ak ·e1)2
−(ak ·ξ)2

)
. (2.2)

2.1 Strong convexity near the global minimizers u=±e1

Theorem 2.2 (Strong convexity near u=±e1). There exists an absolute constant
0<ε0�1 such that the following hold. For m&n, it holds with high probability that

Hξξ(u)≥1, ∀ξ∈Sn−1, ∀u with ‖u±e1‖2≤ε0.
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Proof. By Lemma A.1, we can take ε>0 sufficiently small, N sufficiently large such
that

E
(ak ·ξ)2(ak ·e1)2

ε+(ak ·e1)2
φ
(ak ·ξ
N

)
≥0.99, ∀ξ∈Sn−1, ∀1≤k≤m.

In the above φ∈C∞c (R) satisfies 0≤φ(x)≤1 for all x, φ(x)=1 for |x|≤1 and φ(x)=0
for |x|≥2. Clearly if ‖u±e1‖2≤ ε0 and ε0 is sufficiently small (depending on ε and
N), then

E
(ak ·ξ)2(ak ·u)2

ε+(ak ·e1)2
φ
(ak ·ξ
N

)
≥0.98, ∀ξ∈Sn−1, ∀1≤k≤m.

The above term inside the expectation is clearly OK for union bounds. Thus for
‖u±e1‖≤ε0 and m&n, it holds with high probability that

1

4
Hξξ(u)≥ 1

m

m∑
k=1

((ak ·ξ)2(ak ·u)2

ε+(ak ·e1)2
φ(
ak ·ξ
N

)−(ak ·ξ)2
)
≥3·0.97−1.01, ∀ξ∈Sn−1.

Thus the desired inequality follows.

2.2 The regimes ‖u‖2�1 and ‖u‖2�1 are fine

We first investigate the point u=0. It is trivial to verify that ∇f(0)=0 since ak·e1 6=0
for all k almost surely.

Lemma 2.1 (u=0 has strictly negative-definite Hessian). We have u=0 is a local
maximum point with strictly negative-definite Hessian. More precisely, for m&n, it
holds with high probability that

n∑
k,l=1

ξkξl(∂klf)(0)≤−1, ∀ξ∈Sn−1.

Proof. By (2.2), it is obvious that

Hξξ(0)=−4
1

m

m∑
k=1

(ak ·ξ)2.

The desired conclusion then easily follows from Bernstein’s inequality.
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Write u=
√
Rû where û∈Sn−1 and R>0. Then

f(u)=
1

m

m∑
k=1

(
R(ak ·û)2−(ak ·e1)2

)2
(ak ·e1)2

.

A simple calculation leads to

∂Rf=2R
1

m

m∑
k=1

(ak ·û)4

(ak ·e1)2
−2

1

m

m∑
k=1

(ak ·û)2; (2.3a)

∂RRf=2
1

m

m∑
k=1

(ak ·û)4

(ak ·e1)2
. (2.3b)

Lemma 2.2 (The regime ‖u‖2≥ 1+ε0 is OK). Let 0<ε0� 1 be any given small
constant. Then the following hold: For m&n, with high probability it holds that

∂Rf >0, ∀R≥1+ε0, ∀û∈Sn−1.

Proof. Denote Xk=ak ·e1 and Zk=ak ·û. By (2.3a) and Cauchy-Schwartz, we have

∂Rf≥
2R

m

(∑m
k=1(ak ·û)2

)2∑m
k=1(ak ·e1)2

− 2

m

m∑
k=1

(ak ·û)2

≥2R·(1−δ1)−2(1+δ1), ∀û∈Sn−1,

where 0<δ1�1 is an absolute constant which we can take to be sufficiently small,
and in the last inequality we have used Bernstein. The desired result then easily
follows by taking R≥R1 = 1+2δ1

1−δ1 and choosing δ1 such that R1≤1+ε0.

From (2.3a), due to the highly irregular coefficients near R, it is difficult to
control the upper bound of ∂Rf in the regime R�1. To resolve this difficulty, we
shall examine the Hessian in this regime.

Lemma 2.3 (The regime ‖u‖2≤ 1
3

is OK). For m&n, with high probability it holds
that

He1e1(u)≤−1

2
<0, ∀0<‖u‖2≤

1

3
,

where He1e1 is defined in (2.2).
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Proof. It follows from (2.2) together with Bernstein’s inequality that for m&n with
high probability, it holds

1

4
He1e1(u)=

1

m

m∑
k=1

(
3(ak ·u)2−(ak ·e1)2

)
≤‖u‖22 ·3·

10

9
− 8

9
≤−1

2
.

This completes the proof.

Theorem 2.3 (The regimes ‖u‖2≤ 1
3

and ‖u‖2≥1+ε0 are OK). Let 0<ε0�1 be a
given small constant. For m&n, with high probability the following hold:

1. We have

∂Rf >0, ∀R≥1+ε0, ∀û∈Sn−1.

2. The point u=0 is a local maximum point with strictly negative-definite Hessian,

n∑
k,l=1

ξkξl(∂klf)(0)≤−1, ∀ξ∈Sn−1.

3. We have

He1e1(u)≤−1, ∀‖u‖2≤
1

3
.

Proof. This follows from Lemmas 2.1, 2.2 and 2.3.

Theorem 2.4 (The regime ‖u‖2∼1, ||û·e1|−1|≥η0). Let 0<η0�1 be given. Then
for m&n, the following hold with high probability: Suppose u=

√
Rû, 1/9≤R≤2,

and
∣∣|û·e1|−1

∣∣≥η0. If (∂Rf)(u)=0, then we must have

He1e1(u)<0.

Proof. By (2.3a), we have if ∂Rf(u)=0, then

R
1

m

m∑
k=1

(ak ·û)4

(ak ·e1)2
=

1

m

m∑
k=1

(ak ·û)2.

By Lemma A.2, we have for m&n, it holds with high probability that

1

m

m∑
k=1

(ak ·û)4

(ak ·e1)2
≥100, ∀û∈Sn−1 with ||û·e1|−1|≥η0.

Clearly then R≤ 1
50

with high probability. Thus it follows easily that He1e1(u)<0
also with high probability.
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Theorem 2.5 (Localization of R when ||û·e1|−1|≤η0, R≤1+η0 and u is a critical
point). Let 0<η0�1 be given. For m&n, the following hold with high probability:
Assume u=

√
Rû is a critical point with 1

9
≤R≤1+η0, and ||û·e1|−1|≤η0. Then we

must have

|R−1|≤c(η0),

where c(η0)→0 as η0→0.

Proof. Denote ∂ξf=ξ ·∇f for ξ∈Sn−1. It is not difficult to check that

1

4
∂ξf=

1

m

m∑
k=1

(ak ·u)3(ak ·ξ)
X2
k

− 1

m

m∑
k=1

(ak ·u)(ak ·ξ)=0,

where Xk=ak ·e1. Setting ξ= û and ξ=e1, respectively give us two equations:

R·
( 1

m

m∑
k=1

(ak ·û)4

X2
k

)
− 1

m

m∑
k=1

(ak ·û)2 =0, (2.4a)

R·
( 1

m

m∑
k=1

(ak ·û)3

Xk

)
− 1

m

m∑
k=1

(ak ·û)Xk=0. (2.4b)

We then obtain( 1

m

m∑
k=1

(ak ·û)2
)
·
( 1

m

m∑
k=1

(ak ·û)3

Xk

)
=
( 1

m

m∑
k=1

(ak ·û)4

X2
k

)
·
( 1

m

m∑
k=1

(ak ·û)Xk

)
. (2.5)

Without loss of generality we assume ‖û−e1‖2≤η�1. Then with high probability
we have

1

m

m∑
k=1

(ak ·û)Xk=1+O(η),

1

m

m∑
k=1

(ak ·û)2 =1+O(η).

Observe that by Cauchy-Schwartz,

m∑
k=1

|ak ·û|3

|Xk|
≤
( m∑
k=1

|ak ·û|4

X2
k

) 1
2 ·
( m∑
k=1

(ak ·û)2
) 1

2
.
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Plugging the above estimates into (2.5), we obtain√√√√ 1

m

m∑
k=1

(ak ·û)4

X2
k

≤1+O(η).

Using (2.4a), we then get

R≥1+O(η).

The desired result then easily follows.

We now complete the proof of the main theorem.

Proof of Theorem 2.1. We proceed in several steps.

1. By Theorem 2.2, the function f(u) is strongly convex when ‖u±e1‖2�1.

2. By Theorem 2.3, f has non-vanishing gradient when R≥1+ε0. Also He1e1(u)≤
−1 when ‖u‖2≤ 1

3
. The point u=0 is a strict local maximum point with strictly

negative-definite Hessian.

3. By Theorem 2.4, we have He1e1(u)<0 if ‖u‖2∼1 and ||û·e1|−1|≥ε0.

4. Theorem 2.5 shows that if R≤1+ε0, ||û·e1|−1|≤ε0 and u is a critical point, then
we must have |R−1|≤c(ε0)�1. In yet other words we must have ‖u±e1‖2�1.
This regime is then treated by Step 1.

This completes the proof.

3 Quotient intensity model II

Consider for β>0,

f(u)=
1

m

m∑
k=1

((ak ·u)2−(ak ·x)2)2

β‖u‖22+(ak ·x)2
. (3.1)

Theorem 3.1. Let 0<β<∞. Assume {ak}mk=1 are i.i.d. standard Gaussian random
vectors and x 6=0. There exist positive constants c, C depending only on β, such that
if m≥Cn, then with probability at least 1−e−cm the loss function f =f(u) defined
by (3.1) has no spurious local minimizers. The only local minimizer is ±x, and the
loss function is restrictively convex in a neighborhood of ±x. The point u= 0 is a
local maximum point with strictly negative-definite Hessian. All other critical points
are strict saddles, i.e., each saddle point has a neighborhood where the function has
negative directional curvature.
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Remark 3.1. See Theorem 3.4 for the precise statement concerning restrictive con-
vexity.

Without loss of generality we shall assume x=e1 throughout the rest of the proof.

3.1 The regimes ‖u‖2�1 and ‖u‖2�1 are fine

We first investigate the point u=0. It is trivial to verify that ∇f(0)=0 since ak·e1 6=0
for all k almost surely.

Lemma 3.1 (u= 0 has strictly negative-definite Hessian). We have u= 0 is local
maximum point with strictly negative-definite Hessian. More precisely, for m&n, it
holds with high probability that

n∑
k,l=1

ξkξl(∂klf)(0)≤−d1, ∀ξ∈Sn−1,

where d1>0 is an absolute constant.

Proof. We begin by noting that since almost surely ak ·e1 6=0 for all k, the function
f is smooth at u=0. It suffices for us to consider (write u=

√
tξ)

G(t)=
1

m

m∑
k=1

(t(ak ·ξ)2−(ak ·e1)2)2

βt+(ak ·e1)2
.

Clearly

G′(0)=−β−2
1

m

m∑
k=1

(ak ·ξ)2.

The desired conclusion then easily follows by using Bernstein’s inequality.

Write u=
√
Rû where û∈Sn−1 and R>0. Then

f(u)=
1

m

m∑
k=1

(
R(ak ·û)2−(ak ·e1)2

)2
βR+(ak ·e1)2

.

Clearly

∂Rf=
1

m

m∑
k=1

R2(β(ak ·û)4)+2R(ak ·û)4(ak ·e1)2−β(ak ·e1)4−2(ak ·e1)4(ak ·û)2

(βR+(ak ·e1)2)2
; (3.2)

∂RRf=2
1

m

m∑
k=1

(ak ·e1)4(β+(ak ·û)2)2

(βR+(ak ·e1)2)3
. (3.3)
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Lemma 3.2 (The regime ‖u‖2� 1 is OK). There exist constants R1 =R1(β)> 0,
d1 =d1(β)>0 such that the following hold: For m&n, with high probability it holds
that

∂Rf≥d1, ∀R≥R1, ∀û∈Sn−1.

Proof. We only sketch the proof. Denote Xk = ak ·e1 and Zk = ak ·û. Using the
inequalities (assume R�1 and denote by C1>0 a constant depending only on β)

βR+X2
k≤R(β+X2

k), (βR+X2
k)2≥4βRX2

k ,

and

X4
k

(βR+X2
k)2
≤C1 ·

( R
R2

+χ
|Xk|≥R

1
4

)
,

we have

∂Rf≥
1

m

m∑
k=1

βZ4
k

(β+X2
k)2

φ(
Zk
N

)− 1

m

m∑
k=1

1

4R
X2
k−

2

m

m∑
k=1

C1 ·(R−1+χ
|Xk|≥R

1
4
)·Z2

k ,

where we have chosen φ∈C∞c such that 0≤φ(x)≤1 for all x, φ(x)=1 for |x|≤1 and
φ(x)=0 for |x|≥2. Observe that for a∼N (0,In), Z∼N (0,1),

E(a·û)4χ|a·û|≥N≤EZ4χ|Z|≥N→0 as N→∞.

It is also easy to show that

inf
û∈Sn−1

E
(a·û)4

(β+(a·e1)2)2
&1.

Thus we can take N large such that

inf
û∈Sn−1

E
(a·û)4

(β+(a·e1)2)2
φ
(a·û
N

)
&1.

It is easy to show that by taking R large, for m&n, it holds with high probability
that

1

m

m∑
k=1

χ
|Xk|≥R

1
4
Z2
k≤ε.

Since all the other terms are OK for union bounds, the desired result then clearly
follows by taking R large.
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Lemma 3.3 (The regime ‖u‖2� 1 with |u1|
‖u‖2 ≤

1
10

is OK). There exist a constant

R2=R2(β)>0 such that the following hold: For m&n, with high probability it holds
that

∂u1u1f≤−2<0, ∀0<R≤R2, ∀û∈Sn−1 with |û·e1|≤
1

10
.

Proof. We only sketch the proof. Denote Xk=ak ·e1 and Zk=ak ·û. A short compu-
tation gives

∂u1u1f=
4

m

m∑
k=1

3RX2
kZ

2
k−X4

k

βR+X2
k

+
1

m

m∑
k=1

(RZ2
k−X2

k)2 · 6β
2u21−2β2|u′|2−2βX2

k

(βR+X2
k)3

−16β(û·e1)R2 1

m

m∑
k=1

Z3
kXk

(βR+X2
k)2

+16β(û·e1)R
1

m

m∑
k=1

X3
kZk

(βR+X2
k)2

,

where u1 =u·e1 and u′=u−u1e1. Now observe that

1

m

m∑
k=1

Z2
k

βR+X2
k

X2
k≤

1

m

m∑
k=1

Z2
k ;

1

m

m∑
k=1

X4
k

βR+X2
k

=
1

m

m∑
k=1

(βR+X2
k−βR)2

βR+X2
k

≥
( 1

m

m∑
k=1

(βR+X2
k)
)
−2βR≥−βR+

1

m

m∑
k=1

X2
k ;

1

m

m∑
k=1

R
3
2 |Zk|3R

1
2 |Xk|

(βR+X2
k)2

≤ε1
1

m

m∑
k=1

R2Z4
k

(βR+X2
k)2

+
1

ε31

1

m

m∑
k=1

R2X4
k

(βR+X2
k)2

≤R
2

ε31
+ε1

1

m

m∑
k=1

R2Z4
k

(βR+X2
k)2

;

R

m

m∑
k=1

|Xk|3|Zk|
(βR+X2

k)2
≤ R
m

m∑
k=1

|Xk|3|Zk|
(3(βR)

1
3 (1

4
X4
k)

1
3 )2

.R
1
3β−

2
3

1

m

m∑
k=1

|Xk|
1
3 |Zk|.R

1
3β−

2
3

1

m

m∑
k=1

(X2
k+Z2

k+1),

where in the above the constant ε1>0 will be taken sufficiently small. The needed
smallness will become clear momentarily. Since |u1|/‖u‖2≤ 1

10
, it is clear that for

some absolute constant C1>0,

6β2u21−2β2‖u′‖22−2βX2
k

(βR+X2
k)3

≤−βC1 ·
1

(βR+X2
k)2

.
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Now

− 1

m

m∑
k=1

(RZ2
k−X2

k)2

(βR+X2
k)2
≤− 1

m

m∑
k=1

R2Z4
k

(βR+X2
k)2

+
2R

m

m∑
k=1

Z2
k

βR+X2
k

.

Now take ε1= C1

1000
. By Lemma B.1, we can take R sufficiently small such that with

high probability

2R

m

m∑
k=1

Z2
k

βR+X2
k

<
1

100
.

All the other terms can be treated by taking R sufficiently small, and the desired
result follows easily.

Lemma 3.4 (The regime ‖u‖2� 1 with |u1|
‖u‖2 >

1
10

is OK). There exist a constant

R3=R3(β)>0 such that the following hold: For m&n, with high probability it holds
that the loss function f=f(u) has no critical points in the regime

{
u=
√
Rû : 0<R≤R3, û∈Sn−1 and |û·e1|>

1

10

}
.

Proof. We assume that for 0<R� 1 there exists some critical point. The idea is
to examine the necessary conditions for a potential critical point and then derive a
lower bound on R. Denote Xk = ak ·e1 and Zk = ak ·û. By (3.2), we have ∂Rf = 0
which gives

R
1

m

m∑
k=1

RβZ4
k+2Z4

kX
2
k

(βR+X2
k)2︸ ︷︷ ︸

=:A1

=
1

m

m∑
k=1

βX4
k+2X4

kZ
2
k

(βR+X2
k)2︸ ︷︷ ︸

=:B1

.

On the other hand, by using ∂u1f(u)=0, we obtain

βu1R
2 1

m

m∑
k=1

Z4
k

(βR+X2
k)2
−2R

3
2

1

m

m∑
k=1

Z3
kXk

βR+X2
k

=βu1
1

m

m∑
k=1

2RZ2
kX

2
k−X4

k

(βR+X2
k)2
−2R

1
2

1

m

m∑
k=1

ZkX
3
k

βR+X2
k

.
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Thus

−Rû1
1

m

m∑
k=1

βRZ4
k

(βR+X2
k)2︸ ︷︷ ︸

=:A2

+R·2 1

m

m∑
k=1

Z3
kXk

βR+X2
k︸ ︷︷ ︸

=:A3

=βû1
1

m

m∑
k=1

−2RZ2
kX

2
k+X4

k

(βR+X2
k)2

+2
1

m

m∑
k=1

ZkX
3
k

βR+X2
k︸ ︷︷ ︸

=:B2

.

Without loss of generality we assume û1>
1
10

. Observe that for 0<R≤1, we have

1

m

m∑
k=1

X4
k

(β+X2
k)2

.B1.1+
1

m

m∑
k=1

Z2
k .

Thus with high probability B1∼1.
Now by Lemma B.1, for 0<R�1, we have

1

m

m∑
k=1

RZ2
kX

2
k

(βR+X2
k)2
≤ 1

m

m∑
k=1

RZ2
k

βR+X2
k

�1.

Also for 0<R≤1, we have

1

m

m∑
k=1

X4
k

(β+X2
k)2
≤ 1

m

m∑
k=1

X4
k

(βR+X2
k)2
≤1.

By Lemma B.2, for 0<R�1, we have

c1≤
1

m

m∑
k=1

ZkX
3
k

βR+X2
k

≤c2,

where c1, c2>0 are constants depending only on β. Thus with high probability we
have for 0<R�1, B2∼1.

Now since

RA1 =B1, −RA2+RA3 =B2;

we obtain

A1+B3A2 =B3A3,
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where B3 =B1/B2. Observe that A1>0, A2>0, and

A1∼
1

m

m∑
k=1

Z4
k

βR+X2
k

;

A3≤
( 1

m

m∑
k=1

Z4
k

βR+X2
k

) 3
4
( 1

m

m∑
k=1

X4
k

βR+X2
k

) 1
4
.

It follows easily that with high probability we have

A1∼1.

But then it follows from the equation RA1=B1 that we must have R∼1. Thus the
desired result follows.

Theorem 3.2 (The regimes ‖u‖2�1 and ‖u‖2�1 are OK). For m&n, with high
probability the following hold:

1. We have

∂Rf≥d1, ∀R≥R1, ∀û∈Sn−1,

where d1, R1 are constants depending only on β.

2. We have

∂u1u1f≤−2<0, ∀0<R≤R2, ∀û∈Sn−1 with |û·e1|≤
1

10
,

where R2>0 is a constant depending only on β.

3. The loss function f=f(u) has no critical points in the regime{
u=
√
Rû : 0<R≤R3, û∈Sn−1 and |û·e1|>

1

10

}
,

where R3>0 is a constant depending only on β.

4. The point u=0 is a local maximum point with strictly negative-definite Hessian,

n∑
k,l=1

ξkξl(∂klf)(0)≤−d2<0, ∀ξ∈Sn−1,

where d2>0 is an absolute constant.

Proof. This follows from Lemmas 3.1, 3.2, 3.3 and 3.4.
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3.2 The regime ‖u‖2∼1

Lemma 3.5 (The regime ‖u‖2∼1 with ε0≤|û·e1|≤1−ε0 is OK). Let 0<ε0�1 be
given. Assume 0<c1<c2<∞ are two given constants. Then for m&n, the following
hold with high probability: The loss function f = f(u) has no critical points in the
regime: {

u=
√
Rû : c1<R<c2, ε0≤|û·e1|≤1−ε0

}
.

More precisely, introduce the parametrization û=e1cosθ+e⊥sinθ, where θ∈[0,π] and
e⊥∈Sn−1 satisfies e⊥ ·e1 =0. Then in the aforementioned regime, we have

|∂θf |≥α1>0,

where α1 depends only on (β, ε0, c1, c2).

Proof. See appendix.

Lemma 3.6 (The regime ‖u‖2 ∼ 1 with |û·e1| ≤ ε1 is OK). Let 0< ε1� 1 be a
sufficiently small constant. Assume 0<c1<c2<∞ are two given constants. Then
for m&n, the following hold with high probability: Consider the regime{

u=
√
Rû : c1<R<c2, |û·e1|≤ε1

}
.

Introduce the parametrization û= e1cosθ+e⊥sinθ, where θ ∈ [0,π] and e⊥ ∈ Sn−1
satisfies e⊥ ·e1 =0. Then in the aforementioned regime, we have

∂θθf≤−α2<0,

where α2>0 depends only on (β, ε1, c1, c2).

Proof. See appendix.

Theorem 3.3 (The regime ‖u‖2∼1, ||û·e1|−1|≤ ε0, |‖u‖2−1|≥ c(ε0) is OK). Let
0<R1<1<R2<∞ be given constants. Let 0<ε0�1 be a given sufficiently small
constant and consider the regime

∣∣|û·e1|−1
∣∣≤ε0 with R1≤‖u‖22≤R2. There exists a

constant c0=c0(ε0,R1,R2,β)>0 which tends to zero as ε0→0 such that the following
hold: For m&n, with high probability it holds that (below u=

√
Rû)

∂Rf <0, ∀R2≤R≤1−c0, ∀û∈Sn−1 with ||û·e1|−1|≤ε0;
∂Rf >0, ∀1+c0≤R≤R1, ∀û∈Sn−1 with ||û·e1|−1|≤ε0.
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Proof. We first consider the regime R≥ 1+c. Let φ∈C∞c (R) be an even function
satisfying 0≤φ(x)≤1 for all x, φ(x)=1 for |x|≤1 and φ(x)=0 for |x|>2. By using
(3.2), we have

∂Rf (3.4)

≥ 1

m

m∑
k=1

R2β(ak ·û)4φ
(
ak·û
K

)
+2R(ak ·û)4φ(ak·û

K
)(ak ·e1)2−β(ak ·e1)4−2(ak ·e1)4(ak ·û)2

(βR+(ak ·e1)2)2
.

By taking K sufficiently large, we can easily obtain

E
(

1−φ
(a·e1
K

))
(1+(a·e1)2)�1,

where a∼N (0,In). For fixed K, it is not difficult to check that the lower bound
(3.4) are OK for union bounds and they can be made close to the expectation with
high probability, uniformly in R∼1 and û∈Sn−1. The perturbation argument (i.e.,
estimating the error terms coming from replacing ak ·û by ak ·e1 and so on) becomes
rather easy after taking the expectation. It is then not difficult to show that

∂Rf >0,

for R≥1+c(ε0).
Next we turn to the regime R2≤R≤1−c(ε0). Without loss of generality we may

assume |1−û·e1|≤ε0. The idea is to exploit the decomposition used in the proof of
Lemma 3.4. Namely using ∂Rf=0 and ∂u1f=0, we have

R
1

m

m∑
k=1

RβZ4
k+2Z4

kX
2
k

(βR+X2
k)2︸ ︷︷ ︸

=:A1

=
1

m

m∑
k=1

βX4
k+2X4

kZ
2
k

(βR+X2
k)2︸ ︷︷ ︸

=:B1

;−Rû1
1

m

m∑
k=1

βRZ4
k

(βR+X2
k)2︸ ︷︷ ︸

=:A2

+R·2 1

m

m∑
k=1

Z3
kXk

βR+X2
k︸ ︷︷ ︸

=:A3

=βû1
1

m

m∑
k=1

−2RZ2
kX

2
k+X4

k

(βR+X2
k)2

+2
1

m

m∑
k=1

ZkX
3
k

βR+X2
k︸ ︷︷ ︸

=:B2

.

It is not difficult to check that with high probability, we have B1∼1, B2∼1, and∣∣∣B2

B1

−1
∣∣∣≤η(ε0)�1, ∀R2≤R≤1, ∀û∈Sn−1 with |û·e1−1|≤ε0,
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where η(ε0)→0 as ε0→0. We then obtain

A1 =
(

1+O(η(ε0))
)

(−A2+A3).

From this it is easy (similar to an argument used in the proof of Lemma 3.4) to
derive that

A1+A2+|A3|.1.

Now note that the pre-factor of A2 is û1 =1+O(ε0). By using the relation

A1+A2−A3 =O(η(ε0)),

we obtain

1

m

m∑
k=1

Z4
k

βR+X2
k

− 1

m

m∑
k=1

Z3
kXk

βR+X2
k

=O(η(ε0)).

By using localization, i.e., decomposing

Z3
kXk=Z3

kφ
(Zk
M

)
Xk+Z3

k

(
1−φ

(Zk
M

))
Xk,

Hölder and taking M sufficiently large, one can then derive that (with high proba-
bility) ∣∣∣ 1

m

m∑
k=1

Z4
k−X4

k

βR+X2
k

∣∣∣+∣∣∣ 1

m

m∑
k=1

Z3
kXk−X4

k

βR+X2
k

∣∣∣
=O(η1(ε0)), ∀R2≤R≤1, ∀û∈Sn−1 with |û·e1−1|≤ε0,

where η1(ε0)→0 as ε0→0. It then follows easily that (with high probability)∣∣∣ 1

m

m∑
k=1

(Zk−Xk)
4

βR+X2
k

∣∣∣=O(η2(ε0)), ∀R2≤R≤1, ∀û∈Sn−1 with |û·e1−1|≤ε0,

where η2(ε0)→0 as ε0→0.
Now observe that for A1, we have

|Z4
k−X4

k |≤|Zk−Xk|(O(|Zk|3)+O(|Xk|3))
≤Cε|Zk−Xk|4+ε·(O(|Zk|4)+O(X4

k)),
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where Cε>0 depends only on ε. Clearly by taking ε>0 sufficiently small and using
the derived quantitative estimates preceding this paragraph, we can guarantee that
(with high probability)∣∣∣A1−B1

∣∣∣�1, ∀R2≤R≤1, ∀û∈Sn−1 with |û·e1−1|≤ε0.

It follows that we must have |R−1|� 1 for a potential critical point. By using
(3.2) we have ∂Rf(R= 0)< 0. By using (3.3) we have ∂RRf > 0. Since we have
shown ∂Rf >0 for R>1+c(ε0), it then follows that ∂Rf=0 occurs at a unique point
|R−1|�1 and ∂Rf <0 for R<1−c(ε0) provided c(ε0) is suitably re-defined.

We now show restrictive convexity of the loss function f(u) near the global
minimizer u=±e1.

Theorem 3.4 (Restrictive convexity near the global minimizer). There exists 0<
ε0�1 sufficiently small such that if m&n, then the following hold with high proba-
bility:

1. If ‖u−e1‖2≤ε0 and u 6=e1, then for ξ= u−e1
‖u−e1‖2 ∈S

n−1, we have

n∑
i,j=1

ξiξj(∂ijf)(u)≥γ>0,

where γ is a constant depending only on β.

2. If ‖u+e1‖2≤ε0, then then for ξ= u+e1
‖u+e1‖2 ∈S

n−1, we have

n∑
i,j=1

ξiξj(∂ijf)(u)≥γ>0,

where γ is a constant depending only on β.

3. Alternatively we can use the parametrization u=±e1+tξ, where ξ∈Sn−1, and
|t|≤ε0. Then with this special parametrization, we have

n∑
i,j=1

ξiξj(∂ijf)(u)≥γ>0.

Note that this includes the global minimizers u=±e1.

In yet other words, f(u) is restrictively convex in a sufficiently small neighborhood
of ±e1.
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Proof. See appendix.

Proof of Theorem 3.1. We proceed in several steps as follows.

1. For the regime ‖u‖2�1 and ‖u‖2�1, we use Theorem 3.2. The point u=0
is a local maximum point with strictly negative-definite Hessian. All other
possible critical points must have negative curvature direction.

2. For the regime ‖u‖2∼1, ||û·e1|−1|≥ε0, we use Lemma 3.5 and 3.6. The loss
function either has a nonzero gradient, or it is a strict saddle with a negative
curvature direction.

3. For the regime ‖u‖2∼ 1, |û·e1|−1|≤ ε0, |‖u‖2−1|≥ c(ε0), we apply Theorem
3.3. The loss function has nonzero gradient in this regime.

4. Finally for the regime close to the global minimizers ±e1, we use Theorem 3.4
to show restrictive convexity. This ensures that ±e1 are the only minimizers.

This completes the proof.

4 Quotient intensity model III

Consider for β1>0, β2>0,

f(u)=
1

m

m∑
k=1

((ak ·u)2−(ak ·x)2)2

‖u‖22+β1(ak ·u)2+β2(ak ·x)2
. (4.1)

Theorem 4.1. Let 0<β1,β2<∞. Assume {ak}mk=1 are i.i.d. standard Gaussian
random vectors and x 6= 0. There exist positive constants c, C depending only on
(β1,β2), such that if m≥Cn, then with probability at least 1−e−cm the loss function
f=f(u) defined by (4.1) has no spurious local minimizers. The only local minimizer
is ±x, and the loss function is strongly convex in a neighborhood of ±x. The point
u= 0 is a local maximum point with strictly negative-definite Hessian. All other
critical points are strict saddles, i.e., each saddle point has a neighborhood where
the function has negative directional curvature.

Without loss of generality we shall assume x=e1 throughout the rest of the proof.
Thus we consider

f(u)=
1

m

m∑
k=1

((ak ·u)2−(ak ·e1)2)2

‖u‖22+β1(ak ·u)2+β2(ak ·e1)2
. (4.2)



84 J. Cai, M. Huang, D. Li and Y. Wang / Ann. Appl. Math., 38 (2022), pp. 62-114

4.1 The regimes ‖u‖2�1 and ‖u‖2�1 are fine

We first investigate the point u=0. It is trivial to verify that ∇f(0)=0 since ak·e1 6=0
for all k almost surely.

Lemma 4.1 (u= 0 has strictly negative-definite Hessian). We have u= 0 is a lo-
cal maximum point with strictly negative-definite Hessian. More precisely, it holds
(almost surely) that

n∑
k,l=1

ξkξl(∂klf)(0)≤−d1, ∀ξ∈Sn−1,

where d1>0 is a constant depending only on β2.

Proof. We begin by noting that since almost surely ak ·e1 6=0 for all k, the function
f is smooth at u=0. It suffices for us to consider (write u=

√
tξ)

G(t)=
1

m

m∑
k=1

(t(ak ·ξ)2−(ak ·e1)2)2

t+tβ1(ak ·ξ)2+β2(ak ·e1)2
.

By a simple computation, we have

G′(0)=− 1

β2
2

−β1+2β2
β2
2

· 1

m

m∑
k=1

(ak ·ξ)2.

The desired conclusion then easily follows.

Write u=
√
Rû where û∈Sn−1 and R>0. Denote Xk=ak ·e1. Then

f(u)=
1

m

m∑
k=1

(
R(ak ·û)2−X2

k

)2
R+β1R(ak ·û)2+β2X2

k

.

Clearly

∂Rf=
1

m

m∑
k=1

R2((ak ·û)4+β1(ak ·û)6)+2Rβ2(ak ·û)4X2
k−X4

k−(β1+2β2)(ak ·û)2X4
k

(R+Rβ1(ak ·û)2+β2X2
k)2

; (4.3)

∂RRf=2
1

m

m∑
k=1

(
1+(ak ·û)2(β1+β2)

)
X4
k

(R+Rβ1(ak ·û)2+β2X2
k)3

. (4.4)
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Lemma 4.2 (The regimes ‖u‖2� 1 or ‖u‖2� 1 are OK). There exist constants
Ri=Ri(β1,β2)>0, di=di(β1,β2)>0, i=1,2 such that the following hold: For m&n,
with high probability it holds that

∂Rf≥d1, ∀R≥R1, ∀û∈Sn−1;
∂Rf≤−d2<0, ∀0<R≤R2, ∀û∈Sn−1.

Proof. Denote Zk=ak ·û. We first consider the regime R�1. Observe that

1

m

m∑
k=1

R2Z4
k

(R+Rβ1Z2
k+β2X2

k)2
&

1

m

m∑
k=1

Z4
k

(1+Z2
k+X2

k)2
&1, ∀û∈Sn−1,

where the last inequality holds for m&n with high probability. On the other hand
we note that

1

m

m∑
k=1

X4
k

(R+Rβ1Z2
k+β2X2

k)2
.

1

m

m∑
k=1

X4
k

(R+X2
k)2

(χ
|Xk|≤R

1
4

+χ
|Xk|>R

1
4
)

.R−1+
1

m

m∑
k=1

χ
|Xk|>R

1
4
�1, ∀û∈Sn−1,

where again the last inequality holds for R sufficiently large, and for m&n with high
probability. Similarly we have for R sufficiently large,

1

m

m∑
k=1

(β1+2β2)Z
2
kX

4
k

(R+Rβ1Z2
k+β2X2

k)2

.R−1
1

m

m∑
k=1

Z2
k+

1

m

m∑
k=1

Z2
kχ|Xk|>R

1
4
�1, ∀û∈Sn−1.

Thus it follows easily that ∂Rf&1 for R�1.

Now we turn to the regime 0<R�1. First we note that the main negative term
is OK. This is due to the fact that for 0<R≤1, we have (for m&n and with high
probability)

1

m

m∑
k=1

Z2
kX

4
k

(R+RZ2
k+X2

k)2
≥ 1

m

m∑
k=1

Z2
kX

4
k

(1+Z2
k+X2

k)2
&1, ∀û∈Sn−1.
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On the other hand, we have (for m&n and with high probability)

1

m

m∑
k=1

R2(Z4
k+Z6

k)

(R+RZ2
k+X2

k)2

≤ 1

m

m∑
k=1

RZ4
k

R+RZ2
k+X2

k

·(χ
|Xk|≥R

1
4 |Zk|

+χ
|Xk|<R

1
4 |Zk|

)

≤R
1
2

1

m

m∑
k=1

Z2
k+

1

m

m∑
k=1

Z2
kχ|Xk|<R

1
4 |Zk|

≤R
1
2

1

m

m∑
k=1

Z2
k+

1

m

m∑
k=1

Z2
kχ|Zk|≥K+

1

m

m∑
k=1

K2χ
|Xk|<KR

1
4

�1, ∀û∈Sn−1,

if we first take K sufficiently large followed by taking R sufficiently small. The

estimate of the other term
RZ4

kX
2
k

(R+RZ2
k+X

2
k)

2 is similar and we omit further details.

Collecting the estimates, it is then clear that we can obtain the desired estimate
for ∂Rf when 0<R�1.

4.2 The regime ‖u‖2∼1

Lemma 4.3 (The regime ‖u‖2∼1 with ε0≤|û·e1|≤1−ε0 is OK). Let 0<ε0�1 be
given. Assume 0<c1<c2<∞ are two given constants. Then for m&n, the following
hold with high probability: The loss function f = f(u) has no critical points in the
regime: {

u=
√
Rû : c1<R<c2, ε0≤|û·e1|≤1−ε0

}
.

More precisely, introduce the parametrization û=e1cosθ+e⊥sinθ, where θ∈[0,π] and
e⊥∈Sn−1 satisfies e⊥ ·e1 =0. Then in the aforementioned regime, we have

|∂θf |≥α1>0,

where α1 depends only on (β, ε0, c1, c2).

Proof. We first recall

f(u)=
1

m

m∑
k=1

(
R(ak ·û)2−X2

k

)2
R+β1R(ak ·û)2+β2X2

k

.
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Clearly ak ·û=Xkcosθ+(ak ·e⊥)sinθ, and

∂θ(ak ·û)=Xk(−sinθ)+(ak ·e⊥)cosθ;

∂θθ(ak ·û)=−(ak ·û).

In particular, if θ is away from the end-points 0,π, then

∂θ(ak ·û)=(ak ·û)cotθ−Xkcscθ.

We then obtain (below Zk=ak ·û)

∂θf=−cscθ
1

m

m∑
k=1

2RZk(−X2
k+RZ2

k)·
(

(β1+2β2)X
2
k+R(2+β1Z

2
k)
)
Xk

(R+β1RZ2
k+β2X2

k)2

+cotθ
1

m

m∑
k=1

2RZk(−X2
k+RZ2

k)·
(

(β1+2β2)X
2
k+R(2+β1Z

2
k)
)
Zk

(R+β1RZ2
k+β2X2

k)2
.

Thanks to the strong damping, it is not difficult to check that for any ε>0, if m&n,
then with high probability we have

|∂θf−E∂θf |≤ε, ∀c1≤R≤c2, ∀û∈Sn−1.

The desired result then follows from Lemma C.1.

Lemma 4.4 (The regime ‖u‖2 ∼ 1 with |û·e1| ≤ ε0 is OK). Let 0< ε1� 1 be a
sufficiently small constant. Assume 0<c1<c2<∞ are two given constants. Then
for m&n, the following hold with high probability: Consider the regime{

u=
√
Rû : c1<R<c2, |û·e1|≤ε1

}
.

Introduce the parametrization û= e1cosθ+e⊥sinθ, where θ ∈ [0,π] and e⊥ ∈ Sn−1
satisfies e⊥ ·e1 =0. Then in the aforementioned regime, we have

∂θθf≤−α2<0,

where α2>0 depends only on (β, ε1, c1, c2).

Proof. This is similar to the argument in the proof of Lemma 4.3. By a tedious
computation, we have

∂θθf=
1

m

m∑
k=1

2RGk

(R+β2x2+β1RZ2
k)

3 ,
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where

Gk=−8β1RZ
2
k

(
−X2

k+RZ2
k

)(
R+β2X

2
k+β1RZ

2
k

)
(Xk−Zkcosθ)2csc2θ

−2
(
R+β2X

2
k+β1RZ

2
k

)2(
X4
k−3RX2

kZ
2
k−RZ4

k−2XkZk
(
X2
k−3RZ2

k

)
cosθ

+Z2
k(X2

k−2RZ2
k)cos2θ

)
csc2θ

+β1
(
X2
k−RZ2

k

)2(
Z2
k

(
R+β2X

2
k+β1RZ

2
k

)
+4β1RZ

2
k(Xk−Zkcosθ)2csc2θ

−
(
R+β2X

2
k+β1RZ

2
k

)
(Xk−Zkcosθ)2csc2θ

)
.

It is then tedious but not difficult to check that that for any ε> 0, if m&n, then
with high probability we have

|∂θθf−E∂θθf |≤ε, ∀c1≤R≤c2, ∀û∈Sn−1.

The desired result then follows from Lemma C.1.

Theorem 4.2 (The regime ‖u‖2∼1, ||û·e1|−1|≤ ε0, |‖u‖2−1|≥ c(ε0) is OK). Let
0<c1< 1<c2<∞ be given constants. Let 0<ε0� 1 be a given sufficiently small
constant and consider the regime

∣∣|û·e1|−1
∣∣≤ ε0 with c1≤‖u‖22≤c2. There exists a

constant c0 =c0(ε0,c1,c2,β)>0 which tends to zero as ε0→0 such that the following
hold: For m&n, with high probability it holds that (below u=

√
Rû)

∂Rf <0, ∀c2≤R≤1−c0, ∀û∈Sn−1 with ||û·e1|−1|≤ε0;
∂Rf >0, ∀1+c0≤R≤c1, ∀û∈Sn−1 with ||û·e1|−1|≤ε0.

Proof. We rewrite

f(u)=
1

m

m∑
k=1

g(R,(ak ·û)2,X2
k),

where

g(R,a,b)=
(Ra−b)2

R+β1Ra+β2b
.

It is not difficult to check that for R∼1, we have

|(∂Rg)(R,a,b)−(∂Rg)(R,b,b)|≤‖∂Rag‖∞|b−a|. |b−a|, ∀a,b≥0.

On the other hand, note that (∂Rg)(1,b,b)=0, and for R∼1,

(∂RRg)(R,b,b)=
2b2(1+b(β1+β2))

2

(R+b(β2+β1R))3
∼b.
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Thus for R=1+η, η>0 we have

(∂Rg)(R,a,b)≥∂Rg(R,b,b)−γ1|b−a|
≥γ2 ·η ·b−γ1|b−a|,

where γ1> 0, γ2> 0 are constants depending only on (β1, β2, c1, c2). The desired
result (for ∂Rf >0 when R→1+) then follows from this and simple application of
Bernstein’s inequalities. The estimate for the regime R→ 1− is similar. We omit
the details.

Theorem 4.3 (Strong convexity near the global minimizer). There exist 0<ε0�1
and a positive constant γ such that if m& n, then the following hold with high
probability:

1. If ‖u−e1‖2≤ε0, then

n∑
i,j=1

ξiξj(∂ijf)(u)≥γ>0, ∀ξ∈Sn−1.

2. If ‖u+e1‖2≤ε0, then

n∑
i,j=1

ξiξj(∂ijf)(u)≥γ>0, ∀ξ∈Sn−1.

In yet other words, f(u) is strongly convex in a sufficiently small neighborhood of
±e1.

Proof. See appendix.

Finally we complete the proof of Theorem 4.1.

Proof of Theorem 4.1. We proceed in several steps. All the statements below hold
under the assumption that m&n and with high probability.

1. For u= 0, we use Lemma 4.1. In particular u= 0 is a local maximum point
with strictly negative Hessian.

2. For ‖u‖2�1 or ‖u‖2�1, we use Lemma 4.2. The loss functions has a nonzero
gradient (∂Rf 6=0) in this regime.

3. For ‖u‖2∼1 with ε0≤|û·e1|≤1−ε0, we use Lemma 4.3 to show that the loss
function has a nonzero gradient (∂θf 6=0) in this regime.
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4. For ‖u‖2∼1 with |û·e1|≤ ε0, by Lemma 4.4, the loss function has a negative
curvature direction (i.e., ∂θθf <0) in this regime.

5. For ‖u‖2∼ 1, ||û·e1|−1| ≤ ε0, |‖u‖2−1| ≥ c(ε0), Theorem 4.2 shows that the
gradient of the loss function does not vanish (i.e., ∂Rf 6=0).

6. For ‖u±e1‖�1, Theorem 4.3 gives the strong convexity in the full neighbor-
hood.

It is not difficult to check that the above 6 scenarios cover the whole of Rn. We omit
further details.

5 Numerical experiments

In this section, we demonstrate the numerical efficiency of our estimators by simple
gradient descent and compare their performance with other competitive algorithms.
Our Quotient intensity models are:

QIM1:

min
u∈Rn

f(u)=
1

m

m∑
k=1

((ak ·u)2−(ak ·x)2)2

(ak ·x)2
.

QIM2:

min
u∈Rn

f(u)=
1

m

m∑
k=1

((ak ·u)2−(ak ·x)2)2

β‖u‖22+(ak ·x)2
.

QIM3:

min
u∈Rn

f(u)=
1

m

m∑
k=1

((ak ·u)2−(ak ·x)2)2

‖u‖22+β1(ak ·u)2+β2(ak ·x)2
.

We have shown theoretically that any gradient descent algorithm will not get
trapped in a local minimum for the estimators above. Here we present numerical
experiments to show that the estimators perform very well with randomized initial
guess.

We test the performance of our QIM2 and QIM3 and compare with SAF [5],
Trust Region [29], WF [3], TWF [7] and TAF [34]. Here, it is worth emphasizing
that random initialization is used for SAF, Trust Region [29] and our QIM2, QIM3
algorithms while all other algorithms have adopted a spectral initialization.
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5.1 Recovery of 1D signals

In our numerical experiments, the target vector x∈Rn is chosen randomly from
the standard Gaussian distribution and the measurement vectors ai, i=1,··· ,m are
generated randomly from standard Gaussian distribution or CDP model. For the
real Gaussian case, the signal x∼N (0,In) and measurement vectors ai∼N (0,In)
for i= 1,··· ,m. For the complex Gaussian case, the signal x∼N (0,In)+iN (0,In)
and measurement vectors ai∼N (0,In/2)+iN (0,In/2). For the CDP model, we use
masks of octanary patterns as in [3]. For simplicity, our parameters and step size
are fixed for all experiments. Specifically, we adopt parameter β= 1 and step size
µ= 0.4 for QIM2 and choose the parameter β1 = 0.1, β2 = 1, step size µ= 0.3 for
QIM3. For Trust Region, WF, TWF and TAF, we use the codes provided in the
original papers with suggested parameters.

Example 5.1. In this example, we test the empirical success rate of QIM2, QIM3
versus the number of measurements. We conduct the experiments for the real Gaus-
sian, complex Gaussian and CDP cases, respectively. We choose n= 128 and the
maximum number of iterations is T = 2500. For real and complex Gaussian cases,
we vary m within the range [n,10n]. For CDP case, we set the ratio m/n=L from
2 to 10. For each m, we run 100 times trials to calculate the success rate. Here, we
say a trial to have successfully reconstructed the target signal if the relative error
satisfies dist(uT−x)/‖x‖≤10−5. The results are plotted in Fig. 1. It can be seen that
6n Gaussian phaseless measurement or 7 octanary patterns are enough for exactly
recovery for QIM2 and QIM3.

Example 5.2. In this example, we compare the convergence rate of QIM2, QIM3
with those of SAF, WF, TWF, TAF for real Gaussian and complex Gaussian cases.
We choose n= 128 and m= 6n. The results are presented in Fig. 2. We can see
that our algorithms perform well comparing with state-of-the-art algorithms with
spectral initialization.

Example 5.3. In this example, we compare the time elapsed and the iteration
needed for WF, TWF, TAF, SAF and our QIM2, QIM3 to achieve the relative error
10−5 and 10−10, respectively. We choose n=1000 with m=8n. We adopt the same
spectral initialization method for WF, TWF, TAF and the initial guess is obtained
by power method with 50 iterations. We run 50 times trials to calculate the average
time elapsed and iteration number for those algorithms. The results are shown in
Table 1. The numerical results show that QIM3 takes around 27 and 50 iterations
to escape the saddle points for the real and complex Gaussian cases, respectively.
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Figure 1: The empirical success rate for different m/n based on 100 random trails. (a) Success rate
for real Gaussian case, (b) Success rate for complex Gaussian case, (c) Success rate for CDP case.

Table 1: Time elapsed and iteration number among algorithms on Gaussian signals with n=1000.

Algorithm
Real Gaussian Complex Gaussian

10−5 10−10 10−5 10−10

Iter Time(s) Iter Time(s) Iter Time(s) Iter Time(s)

SAF 44 0.1556 68 0.2276 113 1.3092 190 2.3596

QIM2 58 2.0589 117 3.7204 155 21.6235 314 37.1972

QIM3 88 2.4423 161 4.2229 211 30.2235 422 48.1972

WF 125 4.4214 229 6.3176 304 34.6266 655 86.6993

TAF 29 0.2744 60 0.3515 100 1.7704 211 2.7852

TWF 40 0.3181 87 0.4274 112 1.9808 244 3.7432

Trust Region 21 2.9832 29 4.4683 33 19.1252 42 29.0338
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Figure 2: Relative error versus number of iterations for QIM, SAF, WF, TWF, and TAF method: (a)
Real-valued signals; (b) Complex-valued signals.
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Figure 3: SNR versus relative MSE on a dB-scale under the noisy Gaussian model: (a) Real Gaussian
case; (b) Complex Gaussian case.

5.2 Recovery of natural image

We next compare the performance of the above algorithms on recovering a natural
image from masked Fourier intensity measurements. The image is the Milky Way
Galaxy with resolution 1080×1920. The colored image has RGB channels. We use
L=20 random octanary patterns to obtain the Fourier intensity measurements for
each R/G/B channel as in [3]. Table 2 lists the averaged time elapsed and the
iteration needed to achieve the relative error 10−5 and 10−10 over the three RGB
channels. We can see that our algorithms have good performance comparing with
state-of-the-art algorithms with spectral initialization.
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Table 2: Time elapsed and iteration number among algorithms on recovery of galaxy image.

Algorithm
The Milky Way Galaxy
10−5 10−10

Iter Time(s) Iter Time(s)

SAF 92 202.47 148 351.21

QIM2 168 351.32 282 601.68

QIM3 173 371.59 296 709.21

WF 158 381.7 277 621.63

TAF 65 223.89 122 368.22

TWF 68 315.14 145 566.84

5.3 Recovery of signals with noise

We now demonstrate the robustness of QIM2, QIM3 to noise and compare them
with SAF, WF, TWF, TAF. We consider the noisy model yi= |〈ai,x〉|+ηi and add
different level of Gaussian noises to explore the relationship between the signal-to-
noise rate (SNR) of the measurements and the mean square error (MSE) of the
recovered signal. Specifically, SNR and MSE are evaluated by

MSE:=10log10

dist2(u,x)

‖x‖2
and SNR=10log10

∑m
i=1|a>i x|2

‖η‖2
,

where u is the output of the algorithms given above after 2500 iterations. We choose
n= 128 and m= 8n. The SNR varies from 20db to 60db. The result is shown in
Fig. 3. We can see that our algorithms are stable for noisy phase retrieval.

Appendix A: technical estimates for Section 2

Lemma A.1. Let φ∈C∞c (R) satisfies 0≤φ(x)≤1 for all x, φ(x)=1 for |x|≤1 and
φ(x)=0 for |x|≥2. There exist ε>0 sufficiently small, and N sufficiently large such
that

E
(a·ξ)2(a·e1)2

ε+(a·e1)2
φ
(a·ξ
N

)
≥0.99, ∀ξ∈Sn−1,

where a∼N (0,In).

Proof. We first show that there exist ε>0, such that

E
(a·ξ)2(a·e1)2

ε+(a·e1)2
≥0.995, ∀ξ∈Sn−1. (A.1)
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Clearly it suffices for us to show

sup
ξ∈Sn−1

E
ε(a·ξ)2

ε+(a·e1)2
→0 as ε→0. (A.2)

Observe that ξ=se1+
√

1−s2e⊥1 , |s|≤1, e⊥ ·e1 =0. Thus denoting X and Y as two
independent standard Gaussian random variables with mean zero and unit variance,
we have

sup
ξ∈Sn−1

E
ε(a·ξ)2

ε+(a·e1)2
.E

εX2

ε+X2
+E

εY 2

ε+X2
.ε+E

ε

ε+X2
.
√
ε,

where in the last inequality we used the fact that∫
|x|≤1

ε

ε+x2
dx∼

√
ε.

Thus (A.2) and (A.1) hold. Now ε is fixed. To show the final inequality, we note
that

E
(a·ξ)2(a·e1)2

ε+(a·e1)2
χ|a·ξ|≥N≤E(a·ξ)2χ|a·ξ|≥N≤EX2χ|X|≥N→0,

as N tend to infinity. Thus the desired inequality easily follows.

Lemma A.2. Let 0<η0�1 be given. Then if m&n, then the following hold with
high probability:

1

m

m∑
k=1

(ak ·û)4

(ak ·e1)2
≥100, ∀û∈Sn−1 with ||û·e1|−1|≥η0.

Proof. Without loss of generality we write

û=se⊥±
√

1−s2e1, e⊥∈Sn−1 with e⊥ ·e1 =0.

Clearly |s|≥s0 =s0(η0)>0, where s0(η0) is a constant depending only on η0. Take
a∼N (0,In) and observe that

E
(a·û)4

ε(1+(a·e⊥)2)+(a·e1)2

≥E s4(a·e⊥)4

ε(1+(a·e⊥)2)+(a·e1)2

≥s40
1

2π

∫
1≤y≤2,x∈R

y4

ε(1+y2)+x2
e−

x2+y2

2 dxdy

≥s40
1

200

∫
|x|≤1

1

5ε+x2
dx≥s40 ·O(ε−

1
2 )≥200,
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if ε> 0 is taken sufficiently small. Now we fix this ε. Clearly for m&n with high
probability it holds that

1

m

m∑
k=1

(ak ·û)4

(ak ·e1)2
≥ 1

m

m∑
k=1

(ak ·û)4

ε(1+(ak ·e⊥)2)+(ak ·e1)2

≥100, ∀û∈Sn−1 with ||û·e1|−1|≤η0.

Thus, we complete the proof.

Appendix B: technical estimates for Section 3

Lemma B.1. For any ε> 0, there exists R0 =R0(β,ε)> 0 sufficiently small, such
that if m&n, then the following hold with high probability:

R

m

m∑
k=1

(ak ·û)2

βR+(ak ·e1)2
<ε, ∀û∈Sn−1, ∀0<R≤R0.

Proof. Let φ∈C∞c (R) be such that 0≤φ(x)≤ 1 for all x, φ(x) = 1 for |x| ≤ 1 and
φ(x)=0 for |x|≥2. We then split the sum as

R

m

m∑
k=1

(ak ·û)2

βR+(ak ·e1)2
≤ 1

βm

m∑
k=1

(ak ·û)2φ
(ak ·e1

η0

)
+R·η−20

1

m

m∑
k=1

(ak ·û)2.

Clearly the first term is amenable to union bounds, and we can make it sufficiently
small with high probability by taking η0 small (depending only on β and ε). The
second term is trivial since we can take R sufficiently small. Thus we complete the
proof.

Lemma B.2. There exists R1=R1(β)>0 sufficiently small, such that if m&n, then
the following hold with high probability:

c1≤
1

m

m∑
k=1

(ak ·û)(ak ·e1)3

βR+(ak ·e1)2
≤c2, ∀û∈Sn−1 with û1 ·e1≥

1

10
, ∀0<R≤R1.

In the above c1, c2>0 are constants depending only on β.

Proof. Denote Xk = ak ·e1. Write û= se1+
√

1−s2e⊥, where s≥ 1
10

and e⊥ ∈ Sn−1
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satisfies e⊥ ·e1 =0. We then write

1

m

m∑
k=1

(ak ·û)X3
k

βR+X2
k

=s
1

m

m∑
k=1

X4
k

βR+X2
k

+
√

1−s2 1

m

m∑
k=1

(ak ·e⊥)X3
k

βR+X2
k

=s
1

m

m∑
k=1

X4
k

βR+X2
k

+
√

1−s2 1

m

m∑
k=1

(ak ·e⊥)Xk−
√

1−s2 1

m

m∑
k=1

(ak ·e⊥)
βRXk

βR+X2
k

.

For the first term we note that for 0<R≤1,

1

m

m∑
k=1

X4
k

β+X2
k

≤ 1

m

m∑
k=1

X4
k

βR+X2
k

≤ 1

m

m∑
k=1

X2
k .

Thus we clearly have for all 0<R≤1, 1
10
≤s≤1, with high probability it holds that

2c1≤s
1

m

m∑
k=1

X4
k

βR+X2
k

≤ 1

2
c2.

The second term is clearly OK for union bounds and with high probability it can
be made sufficiently small. For the last term, observe that with high probability,

1

m

m∑
k=1

|ak ·e⊥|
βR|Xk|
βR+X2

k

.
√
βR

1

m

m∑
k=1

|ak ·e⊥|�1, ∀e⊥∈Sn−1,

if R≤R1 and R1 is sufficiently small. The desired result then clearly follows.

Proof of Lemma 3.5. Without loss of generality we consider the situation û=e1cosθ+
e⊥sinθ with ε1≤θ≤ π

2
−ε2, where 0<ε1,ε2�1. The point is that θ stays away from

the end-points 0 and π
2
. Denote Xk=ak ·e1, Yk=ak ·e⊥ and Zk=ak ·û. Then

Zk=cosθXk+sinθYk ⇒ Yk=
1

sinθ
Zk−

cosθ

sinθ
Xk;

∂θZk=−sinθXk+cosθYk=cotθZk−
1

sinθ
Xk.

We then obtain

∂θf=4R2cotθ
1

m

m∑
k=1

Z4
k

βR+X2
k︸ ︷︷ ︸

=:H0

−4R2cscθ
1

m

m∑
k=1

Z3
kXk

βR+X2
k

−4Rcotθ
1

m

m∑
k=1

Z2
kX

2
k

βR+X2
k

+4Rcscθ
1

m

m∑
k=1

ZkX
3
k

βR+X2
k

.
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Since R∼ 1, it is not difficult to check that the third and fourth terms above are
amenable to union bounds†, i.e., with high probability (for m&n) we have∣∣∣ 1

m

m∑
k=1

Z2
kX

2
k

βR+X2
k

−mean
∣∣∣+∣∣∣ 1

m

m∑
k=1

ZkX
3
k

βR+X2
k

−mean
∣∣∣�1, ∀c1≤R≤c2, ∀û∈Sn−1.

Next we treat the second term. Let φ∈C∞c (R) be such that 0≤φ(x)≤1 for all x,
φ(x)=1 for |x|≤1 and φ(x)=0 for |x|≥2. We have

1

m

m∑
k=1

Z3
kXk

βR+X2
k

=
1

m

m∑
k=1

Z3
kXk

βR+X2
k

φ
( Zk
M〈Xk〉

)
︸ ︷︷ ︸

=:H1

+
1

m

m∑
k=1

Z3
kXk

βR+X2
k

(
1−φ

( Zk
M〈Xk〉

))
︸ ︷︷ ︸

=:H2

,

where 〈z〉=(1+|z|2) 1
2 . It is not difficult to check that H1 is OK for union bounds,

and with high probability it holds that∣∣∣H1−EH1

∣∣∣�1, ∀û∈Sn−1, ∀c1≤R≤c2.

For H2 we have (η0 will be taken sufficiently small)

H2≤η0
1

m

m∑
k=1

Z4
k

βR+X2
k

+η−30

1

m

m∑
k=1

X4
k

βR+X2
k

(
1−φ

( Zk
M〈Xk〉

))
≤η0

1

m

m∑
k=1

Z4
k

βR+X2
k︸ ︷︷ ︸

=:H2,a

+η−30

1

m

m∑
k=1

X2
k

(
1−φ

( Zk
M〈Xk〉

))
︸ ︷︷ ︸

=:H2,b

.

We first take η0 sufficiently small so that H2,a can be included in the estimate of H0

without affecting too much the main order. On the other hand, once η0 is fixed, we
can take M sufficiently large such that

|H2,b|+|EH2,b|�1, ∀û∈Sn−1, ∀c1≤R≤c2.

Finally we treat H0. Clearly

H0≥
1

m

m∑
k=1

Z4
k

βR+X2
k

φ
(Zk
K

)
︸ ︷︷ ︸

=:H0,a

.

†The union bound includes covering in û and R.
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By taking K large, it can be easily checked that

sup
û∈Sn−1, c1≤R≤c2

|EH0−EH0,a|�1.

On the other hand, for fixed K, clearly H0,a is OK for union bounds. It holds with
high probability that

|H0,a−EH0,a|�1.

Collecting all the estimates, we obtain

∂θf≥E∂θf+Error,

where |Error|�1. The desired lower bound for ∂θf then easily follows from Lemma
B.3 below.

Lemma B.3. Let u=
√
Rû with 0< c1≤R≤ c2<∞ and û∈ Sn−1. Assume û=

cosθe1+sinθe⊥, where θ∈ [0,π] and e⊥∈Sn−1 satisfies e⊥ ·e1 =0. We have

Ef(u)=h(β,R,cos2θ),

where

max
0≤s≤1

∂sh(β,R,s)≤−γ1<0,

min
0≤s≤1

∂ssh(β,R,s)≥γ2>0.

Here γi=γi(β,c1,c2), i=1,2 depend only on (β, c1, c2). It follows that

E∂θf=a1(β,R,cos2θ)sin(2θ);

E∂θθf=2a1(β,R,cos2θ)cos(2θ)+a2(β,R,θ)sin2(2θ),

where

γ3<ai(β,R,s)≤γ4, ∀s∈ [0,1], i=1,2;

and γ3>0, γ4>0 are constants depending only on (β, c1, c2).

Proof. We have

Ef(u)=
1

2π

∫
R2

(R(xcosθ+ysinθ)2−x2)2

βR+x2
e−

x2+y2

2 dxdy

=
1

π

∫ ∞
0

1

βR+x2
e−

x2

2 ·
√

2πh1(R,x,cos2θ)dx,
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where

h1(R,x,s)=3R2−2Rx2+x4+s(6R2−2Rx2)(−1+x2)+R2s2(3−6x2+x4).

Integrating further in x then gives

Ef(u)=
√

2π · 1
π
·R
(
c1s

2+2c2s+c3

)
, s=cos2θ,

where the value of c3 is unimportant for us, and

c1 =R

∫ ∞
0

1

βR+x2
e−

x2

2 (3−6x2+x4)dx;

c2 =

∫ ∞
0

1

βR+x2
e−

x2

2 (3R−x2)(−1+x2)dx.

First we show that c2<0. By a short computation, we have

c2 =
3+β

2β
·
(
βR
√

2π−e
βR
2 π
√
βR(1+βR)Erfc

(√βR

2

))
,

where

Erfc(y)=
2√
π

∫ ∞
y

e−t
2

dt.

We then reduce the matter to showing

y<ey
2

(1+2y2)

∫ ∞
y

e−t
2

dt, ∀y>0. (B.1)

This follows easily from the usual bound on Erfc(y):

1

y+
√
y2+2

<Erfc(y)·ey2 ·
√
π

2
≤ 1

y+
√
y2+ 4

π

, ∀y>0. (B.2)

Thus c2<0.
Next we show that c1>0. We have

2βc1 =−
√

2πβR(5+βR)+e
βR
2 π
√
βR(3+βR(6+βR))·Erfc

(√βR

2

)
.

It amounts to checking

ey
2

∫ ∞
y

e−t
2

dt>
y(5+2y2)

3+4y2(3+y2)
, ∀y>0.
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This follows from Lemma B.4 below.
Finally we show c1+c2<0. We have

2(c1+c2)

=
√

2πR(−2+β−βR)−e
βR
2 π ·(−β

3
2R

5
2 +(βR)

3
2 +
√
βR−3R

√
βR)Erfc

(√βR

2

)
.

Denote y=
√

βR
2
>0. We then reduce matters to showing

2y2−2R(1+y2)<ey
2 ·2y ·(−2y2R−3R+1+2y2)

∫ ∞
y

e−t
2

dt.

Since we have shown (B.1), we then only need to check

1+y2>ey
2

y(2y2+3)

∫ ∞
y

e−t
2

dt.

This in turn follows from Lemma B.4.
Finally we consider the polynomial

h̃(s)=c1s
2+2c2s.

Since h̃′(s)=2c1s+2c2 and h̃′(0)=2c2<0, h̃′(1)=2c1+2c2<0, we have h̃′(s)<0 for all
s∈ [0,1]. Since c1>0, we have h̃′′(s)>0. The desired result then easily follows.

Lemma B.4 (Refined upper and lower bounds on the Complementary Error func-
tion). Let

Erfc(x)=
2√
π

∫ ∞
x

e−t
2

dt for x>0.

Then

ex
2 ·Erfc(x)·

√
π

2
>

x(5+2x2)

3+4x2(3+x2)
, ∀x>0;

ex
2 ·Erfc(x)·

√
π

2
<

1+x2

x(3+2x2)
, ∀x>0.

Remark B.1. In the regime y≥1, one can check that the upper and lower bounds
here are sharper than (B.2). One should also recall that the usual way to derive
the lower bound in (B.2) through conditional expectation. Namely one can regard
e−y

2
/(
√
πErfc(y)) as the conditional mean µ1(y)=E(X|X>y) where X has the p.d.f.

1√
π
e−x

2
. Then evaluating the variance E((X−µ1)

2|X>y)>0 gives yµ1+ 1
2
−µ2

1>0.
This yields the upper bound for µ1 which in turn is the desired lower bound in
(B.2). An interesting question is to derive a sharper two-sided bounds via more
careful conditioning. However we shall not dwell on this issue here.
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Proof of Lemma B.4. We focus on the regime x>1. By performing successive simple
change of variables, we have

g(x) :=ex
2

∫ ∞
x

e−t
2

dt=

∫ ∞
0

e−2xse−s
2

ds=
1

2x

∫ ∞
0

e−se−(
s
2x

)2ds

∼
∞∑
k=0

(−1)kx−(2k+1) · 1
2
· (2k)!

4kk!
∼
∞∑
k=0

(−1)kx−(2k+1) · 1
2
·
(

1

2

)
k

,

where in the last line we adopted Pochhammer’s symbol (a)n=a(a+1)···(a+n−1).
Note that the above is an asymptotic series, and it is not difficult to check that∣∣∣g(x)−

m∑
k=0

(−1)kx−(2k+1) · 1
2
·
(

1

2

)
k

∣∣∣≤x−2m−3 · 1
2
·
(

1

2

)
m+1

, ∀m≥1, ∀x>0.

Moreover, if m is an even integer, then

g(x)<
m∑
k=0

(−1)kx−(2k+1) · 1
2
·
(

1

2

)
k

, ∀x>0;

and if m is odd, then

g(x)>
m∑
k=0

(−1)kx−(2k+1) · 1
2
·
(

1

2

)
k

, ∀x>0.

Now taking m=4, we have

g(x)<
1

2
x−1− 1

4
x−3+

3

8
x−5− 15

16
x−7+

105

32
x−9.

For x≥3, it is not difficult to verify that

1

2
x−1− 1

4
x−3+

3

8
x−5− 15

16
x−7+

105

32
x−9<

1+x2

x(3+2x2)
.

Hence the upper bound is OK for x≥3.
Next taking m=5, we have

g(x)>
1

2
x−1− 1

4
x−3+

3

8
x−5− 15

16
x−7+

105

32
x−9− 945

64
x−11.

It is not difficult to verify that for x≥4, we have

1

2
x−1− 1

4
x−3+

3

8
x−5− 15

16
x−7+

105

32
x−9− 945

64
x−11>

x(5+2x2)

3+12x2+4x4
.
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Hence the lower bound is OK for x≥4.
Finally for the regime x∈[0,4], we use rigorous numerics to verify the inequality.

Since we are on a compact interval, this can be done by a rigorous computation with
controllable numerical errors.

Proof of Lemma 3.6. Again denote Xk =ak ·e1 and Zk =ak ·û. Without loss of gen-
erality we assume θ ∈ [π

2
−η, π

2
+η] for some sufficiently small η > 0. By a tedious

computation, we have

∂θθf=4R2(1+2cos2θ)csc2θ
1

m

m∑
k=1

Z4
k

βR+X2
k

−24R2(cotθcscθ)
1

m

m∑
k=1

XkZ
3
k

βR+X2
k

+4R(csc2θ)(3R−cos2θ)
1

m

m∑
k=1

Z2
kX

2
k

βR+X2
k

+8R(cotθcscθ)
1

m

m∑
k=1

X3
kZk

βR+X2
k

−4Rcsc2θ
1

m

m∑
k=1

X4
k

βR+X2
k

.

Note that the third, fourth and fifth terms are OK for union bounds. The second
and the first term can be handled in a similar way as in the proof of Lemma 3.5. The
only difference is that the sign is now negative in the regime θ→ π

2
. Using Lemma

B.3 it follows that ∂θθf <0 in this regime. We omit the repetitive details.

Proof of Theorem 3.4. Without loss of generality we consider the regime ‖u−e1‖2�
1. Before we work out the needed estimates for the restricted convexity, we explain
the main difficulty in connection with the full Hessian matrix. Denote Xk =ak ·e1.
Then for any ξ∈Sn−1, we have

Hξξ=
∑
i,j

ξiξj(∂uiujf)(u)

=12
1

m

m∑
k=1

(ak ·ξ)2(ak ·u)2

β‖u‖22+X2
k

(B.3)

−4
1

m

m∑
k=1

(ak ·ξ)2X2
k

β‖u‖22+X2
k

(B.4)

−16β
1

m

m∑
k=1

(ak ·u)3(ak ·ξ)(u·ξ)
(β‖u‖22+X2

k)2
(B.5)

+16β
1

m

m∑
k=1

X2
k(ak ·u)(ak ·ξ)(u·ξ)

(β‖u‖22+X2
k)2

(B.6)
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−2β
1

m

m∑
k=1

((ak ·u)2−X2
k)2

(β‖u‖22+X2
k)2

(B.7)

+8β2(ξ ·u)2
1

m

m∑
k=1

((ak ·u)2−X2
k)2

(β‖u‖22+X2
k)3

. (B.8)

First observe that if u=e1, then the Hessian can be controlled rather easily thanks
to the damping β‖u‖22+X2

k .
On the other hand, for u 6=e1, as far as the lower bound is concerned, the main

difficult terms are (B.7) and (B.5) which are out of control if we do not impose any
condition on ξ (i.e., using (B.3) to control it). On the other hand, if we restrict ξ
to the direction u−e1, then we can control these difficult terms by using the main
good term (B.3). Namely, introduce the decomposition

u=e1+tξ,

where t=‖u−e1‖2�1. Then for (B.5) we write

(ak ·u)3(ak ·ξ)=(ak ·u)2(ak ·e1)(ak ·ξ)+t(ak ·u)2(ak ·ξ)2.

Since t�1, the term t(ak ·u)2(ak ·e1)2 (together with the pre-factor term in (B.5))
can be included into (B.3) which still has a good lower bound by using localization.
On the other hand, the term (ak ·u)2(ak ·e1)(ak ·ξ) can be split as

(ak ·u)2(ak ·e1)(ak ·ξ)

=(ak ·u)2(ak ·e1)(ak ·ξ)φ
(ak ·u
K

)
(B.9)

+(ak ·u)2(ak ·e1)(ak ·ξ)
(

1−φ
(ak ·u
K

))
, (B.10)

where φ is a smooth cut-off function satisfying 0≤φ(z)≤1 for all z∈R, φ(z)=1 for
|z|≤1 and φ(z)=0 for |z|≥2. Clearly the contribution of (B.9) in (B.5) is OK for
union bounds. On the other hand, for (B.10) we have

(ak ·u)2|ak ·e1||ak ·ξ|·
(

1−φ
(ak ·u
K

))
≤(ak ·u)2ε(ak ·ξ)2+ε−1(ak ·u)2(ak ·e1)2

(
1−φ

(ak ·u
K

))
.

Clearly this is under control (the first term can again be controlled using (B.3)).
Now we turn to (B.7). The main term is (ak ·u)4. We write

(ak ·u)2(ak ·u)2 =(ak ·u)2(ak ·e1)2+t2(ak ·u)2(ak ·ξ)2+2t(ak ·u)2(ak ·e1)(ak ·ξ).
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Clearly then this is also under control.
By further using localization, we can then show that with high probability, it

holds that

Hξξ≥EHξξ+Error,

where |Error|�1. The desired conclusion then follows from Lemma B.5.

Remark B.2. Introduce the parametrization u=
√
R(e1cosθ+e⊥sinθ), where e⊥∈

e1 =0, |R−1|�1 and |θ|�1. One might hope to prove that the Hessian matrix(
∂RRf ∂Rθf
∂Rθf ∂θθf

)
is positive definite near u=e1 under the mere assume m&n and with high probability.
However there is a subtle issue which we explain as follows. Consider the main term
(write X=ak ·e1 and Y =ak ·e⊥)

f̃= f̃k=

(
R(X cosθ+Y sinθ)2−X2

)2
βR+X2

.

The most troublesome piece come from quartic and cubic terms in Y , and we consider

h̃1 =
R2Y 4sin4θ

βR+X2
, h̃2 =

R2
(

4Y 3X sin3θcosθ
)

βR+X2
.

For h̃2 we do not have a favorable sign and the only hope is to control it via h̃1. On
the other hand, for h̃1, we can take X=Y =1, β=1, and compute

(∂RRh̃1)·(∂θθh̃1)−(∂Rθh̃1)
2 =− 8R2

(1+R)4
sin6θ·

(
3+4R+R2+(2+4R+R2)cos2θ

)
.

In yet other words, the sign is not favorable and this renders the Hessian out of
control (before taking the expectation).

Lemma B.5. Let u=e1+tξ, where ξ∈Sn−1. Then for |t|�1, we have

E∂ttf(u)≥c0>0, ∀ξ∈Sn−1,

where c0>0 is a constant depending only on β.
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Proof. Introduce the parametrization ξ= se1+
√

1−s2e⊥, where e⊥ ·e1 = 0, |s| ≤ 1.
Then

u=e1+t
(
se1+

√
1−s2e⊥

)
=(1+ts)e1+t

√
1−s2e⊥.

Thus

Ef(u)=
1

2π

∫
R2

(
((1+ts)x+t

√
1−s2y)2−x2

)2
β(1+2ts+t2)+x2︸ ︷︷ ︸

=:h(t,s,x,y)

e−
x2+y2

2 dxdy.

It is not difficult to check that

∂tth(t,s,x,y)
∣∣∣
t=0

=
8x2(sx+

√
1−s2y)2

β+x2
.

Thus it follows that

E∂ttf(u)
∣∣∣
t=0,|s|≤1

&1.

The desired result then follows by a simple perturbation argument using the fact
that E∂tttf is uniformly bounded and taking |t| sufficiently small.

Appendix C: technical estimates for Section 4

Lemma C.1. Let u=
√
Rû with 0< c1≤R≤ c2<∞ and û∈ Sn−1. Assume û=

cosθe1+sinθe⊥, where θ∈ [0,π] and e⊥∈Sn−1 satisfies e⊥ ·e1 =0. We have

E∂θf=a1(β1,β2,R,θ)sin(2θ);

where

γ1<a1(β1,β2,R,θ)≤γ2, ∀θ∈ [0,π], c1≤R≤c2;

and γ1>0, γ2>0 are constants depending only on (β1, β2, c1, c2). Furthermore for
some sufficiently small constants θ0=θ0(β1,β2,c1,c2)>0, θ1=θ1(β1,β2,c1,c2)>0, we
have

γ3<E∂θθf <γ4, if 0≤θ≤θ0 or π−θ0≤θ≤π,

γ5<−E∂θθf <γ6, if
∣∣∣θ−π

2

∣∣∣<θ1,
where γi>0, i=3,··· ,6 depend only on (β1, β2, c1, c2).
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Proof. We have

Ef(u)=
1

2π

∫
R2

(
R(xcosθ+ysinθ)2−x2

)2
R+β1R(xcosθ+ysinθ)2+β2x2

e−
x2+y2

2 dxdy.

Denote

h(a,b)=
(Ra2−b)2

R+β1Ra2+β2b
.

Then

∂θ

(
h(xcosθ+ysinθ,x2)

)
=(−xsinθ+ycosθ)∂ah;

∂x

(
h(xcosθ+ysinθ,x2)

)
=∂ah·cosθ+2x∂bh;

∂y

(
h(xcosθ+ysinθ,x2)

)
=∂ah·sinθ;

∂θ

(
h(xcosθ+ysinθ,x2)

)
=(y∂x−x∂y)

(
h(xcosθ+ysinθ,x2)

)
−2xy∂bh.

By using integration by parts, we then obtain

E∂θf=
1

π

∫
R2

(−xy)(∂bh)(xcosθ+ysinθ,x2)e−
x2+y2

2 dxdy

=
2

π

∫
x>0,y>0

(
(∂bh)(xcosθ−ysinθ,x2)−(∂bh)(xcosθ+ysinθ,x2)

)
xye−

x2+y2

2 dxdy.

Now denote

h1(a,b)=
(Ra−b)2

R+β1Ra+β2b
.

It is not difficult to check that for a≥0, b≥0, β1,β2>0, R>0,

∂abh1 =−2R2 (1+a(β1+β2))·(b(β1+β2)+R)

(β2b+R+β1aR)3
<0.

Observe that

(∂bh)(a,b)=(∂bh1)(a
2,b).

Then if x,y>0 and θ∈ [0,π], then

(∂bh)(xcosθ−ysinθ,x2)−(∂bh)(xcosθ+ysinθ,x2)

=(∂bh1)((xcosθ−ysinθ)2,x2)−(∂bh1)((xcosθ+ysinθ)2,x2)

=−2

∫ 1

0

(∂abh1)
(

(xcosθ+ysinθ)2−4τxycosθsinθ,x2
)
dτ ·xy ·sin(2θ).
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Integrating in x and y, we then obtain

E∂θf=a1(β1,β2,R,θ)sin(2θ),

where a1∼1 and is a smooth function of θ. Differentiating in θ then gives

E∂θθf=2a1(β1,β2,R,θ)cos(2θ)+∂θa1(β1,β2,R,θ)sin(2θ).

Then second term clearly vanishes near θ= 0, π
2
, π. Thus the desired estimate for

E∂θθf follows.

Lemma C.2 (Strong convexity of Ef when ‖u±e1‖�1). Let h(u)=Ef(u). There
exists 0<ε0�1 such that the following hold:

1. If ‖u−e1‖2≤ε0, then for any ξ∈Sn−1, we have

n∑
i,j=1

ξiξj(∂i∂jh)(u)≥γ1>0,

where γ1 is a constant.

2. If ‖u+e1‖2≤ε0, then for any ξ∈Sn−1, we have

n∑
i,j=1

ξiξj(∂i∂jh)(u)≥γ1>0.

Proof. We shall employ the same approach as in the proof of Theorem 2.5 in the
second paper of this series of work and sketch only the needed modifications. With-
out loss of generality consider the regime ‖u−e1‖2�1 and introduce the change of
variables:

u=ρû;

û=
√

1−s2e1+se⊥, e⊥ ·e1 =0, e⊥∈Sn−1,

where |ρ−1|�1 and 0≤s�1. Denote

h1(ρ,s)=h(u)=h
(
ρ
(√

1−s2e1+se⊥
))
,

where we note that the value of h(u) depends only on (ρ, s). Clearly

h1(ρ,s)=
1

2π

∫
R2

(
ρ2(
√

1−s2x+sy)2−x2
)2

ρ2+β1ρ2(
√

1−s2x+sy)2+β2x2︸ ︷︷ ︸
=:h2(ρ,s,x,y)

e−
x2+y2

2 dxdy.
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It is easy to check that

max
1
2
≤ρ≤2,|s|≤ 1

2

∑
i,j≤4

|∂iρ∂jsh1(ρ,s)|.1.

By a tedious computation, we have

∂ρρh2(ρ,0,x,y)=
2(3ρ2+ρ6)x4+k1 ·x6+k2x

8

(β2x2+ρ2(1+β1x2))3
,

where

k1 =2(−β2+6β1ρ
2+6β2ρ

2+3β2ρ
4+2β1ρ

6);

k2 =2(−β1β2−2β2
2 +3β2

1ρ
2+6β1β2ρ

2+6β2
2ρ

2+3β1β2ρ
4+β2

1ρ
6).

Since ρ→1, it is clear that k1>0 and k2>0, and thus

∂ρρh1(1,0)&1.

It is not difficult to check that ∂sh1(ρ,0)=0 for any ρ>0. Clearly also ∂ρsh1(ρ,0)=0
for any ρ>0. To compute ∂ssh1(1,0) we shall use Lemma C.1. Observe that (s=sinθ
with θ→0+)

h1(ρ,sinθ)=Ef(u);

cosθ∂sh1(ρ,sinθ)=E∂θf ;

−sinθ∂sh1(ρ,sinθ)+cos2θ∂ssh1(ρ,sinθ)=E∂θθf.

Clearly it follows that

∂ssh1(1,0)&1.

The rest of the argument is then essentially the same as in the proof of Theorem
2.5 in the second paper. We omit further details.

Proof of Theorem 4.3. We rewrite

f(u)=
1

m

m∑
k=1

G(‖u‖22,(ak ·u)2,X2
k),

where

G(a,b,c)=
(b−c)2

a+β1b+β2c
.
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Clearly for any ξ∈Sn−1,
n∑

i,j=1

ξiξj∂uiujf

=
1

m

m∑
k=1

∂aG·2‖ξ‖22 (C.1)

+
1

m

m∑
k=1

∂aaG·4(u·ξ)2 (C.2)

+
1

m

m∑
k=1

∂abG·8(ak ·u)(ak ·ξ)(ξ ·u) (C.3)

+
1

m

m∑
k=1

∂bbG·4(ak ·u)2(ak ·ξ)2 (C.4)

+
1

m

m∑
k=1

∂bG·2(ak ·ξ)2. (C.5)

In the above,
∂aG=(∂aG)(‖u‖22,(ak ·u)2,X2

k)

and similar notation is used for ∂aaG, ∂bbG, ∂bG.

Estimate of (C.1) and (C.2). Clearly these two terms are OK for union bounds, and
we have (for m&n and with high probability)

|(C.1)−mean|+|(C.2)−mean|�1, ∀ξ∈Sn−1, ∀1

2
≤‖u‖2≤2.

Estimate of (C.3). We have

(∂abG)(a,b,c)=−2(b−c)(a+(β1+β2)c)

(a+β1b+β2c)3
.

Consider the function

G̃1(a,y,c)=−y2(y2−c)(a+(β1+β2)c)

(a+β1y2+β2c)3
.

Clearly for 1
10
≤a,ã≤10, y,ỹ∈R, c≥0, we have |G̃1|.1 and

|G̃1(a,y,c)−G̃1(ã,ỹ,c)|. |a−ã|+|y−ỹ|.
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Then for any (u, ũ) with 1
2
≤‖u‖2,‖ũ‖2≤2 and (ξ, ξ̃) with ξ,ξ̃∈Sn−1, we have∣∣∣(∂abG)(‖u‖22,(ak ·u)2,X2

k)(ak ·u)(ak ·ξ)

−(∂abG)(‖ũ‖22,(ak ·ũ)2,X2
k)(ak ·ũ)(ak ·ξ̃)

∣∣∣
.|ak ·(ξ−ξ̃)|+|ak ·ξ|·(|ak ·(u−ũ)|+‖u−ũ‖2).

Thus the union bound is also OK for this term, and we have

|(C.3)−mean|�1, ∀ξ∈Sn−1, ∀1

2
≤‖u‖2≤2.

Estimate of (C.4) and (C.5). We begin by noting that (C.4) and (C.5) can be com-
bined into one term. Namely, observe that

(∂bbG)(a,b,c)·2b+(∂bG)(a,b,c)=
H1

(a+β1b+β2c)3
,

where

H1 =β2
1b

3+a2(6b−2c)+3β1β2b
2c+3b(β2

1 +2β1β2+2β2
2)c2−β2(β1+2β2)c

3

+a
(

3β1b
2+6(β1+2β2)bc−(β1+4β2)c

2
)
.

We can then write

(C.4)+(C.5)=
1

m

m∑
k=1

(ak ·ξ)2h3(u,ak ·u,Xk),

where h3 is a bounded smooth function with bounded derivatives in all of its argu-
ments. Now let φ∈C∞c be such that 0≤φ(x)≤1 for all x, φ(x)=1 for |x|≤1 and
φ(x)=0 for |x|≥2. We then split the sum as

1

m

m∑
k=1

(ak ·ξ)2h3(u,ak ·u,Xk),

=
1

m

m∑
k=1

(ak ·ξ)2φ(
ak ·ξ
K

)h3(u,ak ·u,Xk)

+
1

m

m∑
k=1

(ak ·ξ)2(1−φ(
ak ·ξ
K

))·h3(u,ak ·u,Xk),
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where K will be taken sufficiently large. Clearly the first term will be OK for union
bounds. On the other hand, the second term can be dominated by

const· 1
m

m∑
k=1

(ak ·ξ)2
(

1−φ
(ak ·ξ
K

))
,

which can be made small by taking K large. Thus we have

|(C.4)+(C.5)−mean|�1, ∀ξ∈Sn−1, ∀1

2
≤‖u‖2≤2.

Collecting the estimates, we have for m&n and with high probability,∣∣∣ n∑
i,j=1

ξiξj∂uiujf(u)−mean
∣∣∣�1, ∀ξ∈Sn−1, ∀1

2
≤‖u‖2≤2.

The desired result then follows from Lemma C.2.
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